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Abstract—In this paper, a new technique is presented for the
numerical analysis of open boundary three-dimensional (3-D)
vias embedded in multilayered strata. This approach is based
on an enhanced spatial network method (SNM) algorithm, and
leads to speed-up factors of 10–12 over the standard SNM
implementation. Absorbing boundary conditions, based on the
perfect matching layer (PML) concept, are implemented for open
boundary truncation. Unlike the standard PML’s, the proposed
absorbing boundary conditions (ABC’s) do not require introduc-
tion of additional variables.

Index Terms—Absorbing boundary conditions, finite differenc-
ing, microstrip discontinuities, time-domain modeling.

I. INTRODUCTION

T HE ADVANCES in microwave integrated circuit (MIC)
technology and the increased need for higher circuit

densities have resulted in greater proliferation of MIC dis-
continuities. Their effects on circuits, which contain multiple
signal layers, have to be correctly predicted, especially in
high-frequency (HF) designs. One of the most common dis-
continuities is a via, which provides an electrical path between
signal lines on different layers.

The characterization of three-dimensional (3–D) microstrip
discontinuities has been previously confined to two main
approaches: the semianalytical formulations of specific prob-
lems or to the purely numerical general-purpose algorithms.
Both methodologies are capable of yielding results for the

-parameters in the frequency domain. The semianalytic meth-
ods are a blend of the method of moments (MoM) with the
spectral-domain approach, which lead, for example, to the
so-called spatial-domain method [1]. This approach has been
demonstrated in the study of 3-D problems, such as vias em-
bedded in multilayered dielectric strata. At higher frequencies
(for open structures) the surface waves and radiation losses
can no longer be ignored. In this case, to correctly describe
the current along a vertical post between two microstrips, such
as the via, pulse functions were used in the MoM formulation
of the scattering problem [2].

Presently, for the purely general-purpose numerical tech-
niques for the modeling of such discontinuities, the best-
known methods are the finite-difference time-domain (FDTD)
and transmission-line matrix (TLM) methods. Both of these

Manuscript received March 12, 1996; revised February 28, 1997. This work
was supported by the U.S. Army Research Office under Grant DAAL03-92-
G-0275.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of South Carolina, Columbia, SC 29208 USA.

Publisher Item Identifier S 0018-9480(97)03912-4.

techniques have been used to characterize the electrical prop-
erties of 3-D microstrip discontinuities. TLM, in its frequency
domain form, has been employed in the computation of the

-parameters for transmission line interconnects, such as vias
and air bridges [3]. FDTD has also been utilized in the study of
vias, among other irregular geometries [4]. The time-domain
results of FDTD are usually transformed into the frequency
domain using the fast Fourier transform (FFT) to obtain the

-parameters.
In order to analyze open boundary problems, all differential-

equation-based methods need to be linked to absorbing bound-
ary condition (ABC) algorithms. Thus far, the most popular
types of ABC’s have included factoring of the one-way
equations, or introducing artificial lossy layers into part of the
computational domain, which is then truncated by a metallic
wall. The latter method is referred to as the perfect matching
layer (PML) approach, and to date has been shown to lead
to the lowest artificial reflection coefficients when used in
conjunction with FDTD.

In this paper, the new enhanced spatial network (ESN)
method algorithm, which is derived from the conventional
SNM [5], is used in conjunction with PML’s for the electrical
characterization of vias embedded in multilayer structures
within open MIC environments. Compared to the SNM, the
ESN is about 10–12 times faster and requires about half the
memory of previous SNM implementations. The PML’s are
specialized for the ESN and do not require the introduction of
additional variables. They are applied for the first time to the
ESN algorithm and they yield reflection coefficients ranging
from 41 to 26 dB for normal wave incidence, depending
on the number of dielectric layers contained in the substrate.

II. THEORY

A. Formulation of ESN

The basics of the SNM algorithm have been described ex-
tensively in [5], and, therefore, will not be repeated. However,
to point out where the ESN departs from the standard SNM, the
governing equations of the SNM are restated for completeness.
Similar notations, as well as current and voltage definitions (in
terms of electromagnetic (EM) fields), which were introduced
in [5], will be used in the following discussion.

For the electric ( ) node (Fig. 1), the nodal
equation can be derived assuming that from the adjacent
magnetic nodes at timestep, waves are launched toward the
central node, reaching it at timestep . For the waves
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Fig. 1. Vex electric node specific to the SNM algorithm.

launched from the surrounding nodes ( and
), the wave equations are

(1)

where is the characteristic impedance of the
transmission lines. In addition to the currents entering the

node via the transmission lines, there are also
currents through the resistor and capacitor connected to the
node. The final nodal equation for is obtained by
enforcing Kirchoff’s current law, which yields (2a), as shown
at the bottom of the page, where

(2b)

(2c)

The terms, given by the right-hand side (RHS)
of (1) account for the waves propagating toward the node
on the four transmission lines surrounding it. is associated
with the flow of current through the capacitor and is given by

(3)

According to [5], the ratio , which is
interpreted as the normalized velocity of the algorithm, should

be equal to 4.0—this limit being imposed by the definition of
in (2b). Similar equations can also be obtained for voltages

at the magnetic nodes and in conjunction with (2a), can be used
to solve the boundary value problem, as described in [5].

Reduction of the SNM algorithm begins with modifications
to (1) by recasting them in terms of normalized voltages and
currents ( , , ,
and , where ). To make an explicit
distinction between the electric and magnetic variables, the

terms are replaced with voltages and currents
using (1) and the normalizations stated above. This leads to
(4), as shown at the bottom of the page, where the following
notation has been used:

TOT

(5)

TOT

(6)

(7)

and where is the current through the capacitor (Fig. 1).
To simplify the algorithm for the same electric node

, the currents denoted by TOT in (4) must be
expressed in terms of electric and magnetic voltages only.
Each of the currents comprising TOT is derived from nodal
equations written for the magnetic nodes surrounding the
electric node

(8)

allowing for TOT to be written as a function of
and the surrounding magnetic voltages

TOT

(9)

(2a)

TOT TOT (4)
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Application of Kirchoff’s current law in (9) for the currents
at time , and the usage of the result in (4), leads to the
following finite-difference expression for :

(10)

The above expression still contains a restrictive artifact
from the SNM, namely, the normalized algorithm velocity

. To generalize this algorithm for
any normalized velocity, the 4.0’s are replaced with, and

is redefined as . As
a result, the restriction on can be removed and the stability
of the algorithm can be analyzed for a whole range of new
values of the normalized velocity.

With the generalizations mentioned above, (10) represents
a new finite-difference scheme for updating (or ). It is
equivalent to the SNM scheme, which uses central differences
for the space and time derivatives. Unlike the SNM, the
new algorithm employs only 12 variables for each unit cell.
In addition, the proposed scheme is no longer restricted to
a predefined normalized velocity, which was removed by
redefining terms related to the dielectric (i.e., ). It should
be added that analogous expressions can also be derived for
the remaining components of the EM fields and used together
with (10) to solve the field problem.

Comparison of the standard SNM algorithm and the pro-
posed ESN reveals that the SNM needs one voltage and
five associated currents for each of the six nodes in a unit
cell, adding up to a total of 36 variables per unit cell. The
ESN reduces the number of variables per unit cell from 36
to 12, utilizing only one voltage and one current for each
node. In addition to saving computer memory, this approach
also reduces the number of computer operations per unit cell
from six assignments, twenty additions, four multiplications
and one division to two assignments, ten additions, four
multiplications, and one division.

As a slight point of departure, it is also informative to add
that further reduction in the number of variables per unit cell
can be achieved. This is done by replacing the remaining
capacitor currents in (10) with expressions containing electric
voltages only. Applying a central finite-difference approxima-
tion to the – characteristic of the capacitor ,
allows for to be recursively defined as follows:

(11)

The resulting algorithm, which is obtained by repeatedly using
(11) in the generalized form of (10), is shown below:

(12)

Irrespective of the added benefits in further reducing the
number of unknowns, the finite-difference scheme presented
in (12) is impractical, and hence, was not used. It needs for
the time history of every variable to be stored from time
up to the present timestep.

B. Implementation of PML’s for Open Boundaries

PML’s were first proposed in [7] for two-dimensional
(2-D) problems and later extended to 3-D problems in [8].
When used in FDTD, this technique doubles the number
of variables at each node within the PML layer, to achieve
independent attenuation of the field variables. The attenuation
is accomplished by subjecting the material parameters within
the PML layers to the following relationship:

(13)

and using the regular FDTD algorithm to update the field
components. This implementation of PML’s has several draw-
backs. First, it increases the computational volume and the
number of unknowns. Secondly, it alters the stability of
the main finite-difference algorithm, thus requiring a smaller

ratio, which leads to longer computation times.
Thus far, only FDTD specific PML’s have been imple-

mented in the solution of guided-wave problems. The direct
use of PML’s, with splitting of field variables, as described in
[8], was found to trigger numerical instabilities in the ESN.
To overcome this, a modified form of the PML algorithm was
implemented, based on the finite-differencing scheme of ESN.

It should be added that since Higdon ABC’s have small
reflections at grazing incidence, and do not require additional
variables, they were used on all sidewalls of the lattice. At
boundaries normal to the direction of propagation, however,
the ESN-specific PML’s were used, assuming that the basic
mode of propagation is quasi-TEM.

As can be seen from (2) and (10), both the SNM and
ESN contain expressions for the losses (termsand ,
respectively). This suggests that sufficient attenuation of the
fields within the PML layers [whose parameters are subjected
to (13)] could be achieved without splitting the variables.
Initial use of (10), with PML layers added to the ESN
lattice, for attenuating the transverse components of the fields,
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produced reflections as high as those due to Higdon ABC’s
for normal incidence ( 23 dB). However, these reflections are
not due to the lattice truncation boundary, but are attributed
to the interface of the first PML layer. Further numerical
investigation revealed that the regular ESN algorithm within
the PML space exhibits near exponential decay. As a result,
when a sufficient number of PML layers (16 layers) was used,
the reflections from lattice boundaries became negligible.

Since the greatest source of reflections was found to be
the conductivity of the first PML layer, its effect within the
PML space had to be de-emphasized. This was accomplished
(after an extensive numerical study) by neglecting the lossy
terms in the denominator of (10), while still retaining the
nearly exponential decay of the wave along the direction
of propagation. As a result, the modified form of the ESN
algorithm within the PML layers is given by

(14)

The decay of the wave along the direction of propagation,
which is built in (14), is less steep than that reported for
FDTD PML’s. This requires a thicker absorbing wall (24 cells
as opposed to eight), but eliminates the use of additional vari-
ables, without causing significant reflections or instabilities.
Compared to the Higdon ABC’s, the ESN-specific PML’s do
not require a larger computational volume and lead to better
performance ( 23 dB versus 34 dB). The results of the
above-proposed boundary truncation are presented in the next
section.

III. N UMERICAL RESULTS AND CONCLUSION

In order to assess the performance of the new ESN al-
gorithm, multilayered discontinuities within open boundary
environments were studied and the results were compared
to previously published data. A via connecting signal lines
on different layers of the dielectric, which is isolated by a
ground plane, are shown in Fig. 2. The aim of the study was to
obtain the -parameters in the frequency domain. The standard
approach for time-domain methods is to excite the structure
with a Gaussian pulse and to store the incident, transmitted,
and reflected waveforms. The-parameters are subsequently
obtained with the help of fast Fourier transform (FFT). This
methodology is correct as long as both the physical dispersion
of the structure and that of the numerical algorithm are low,
and the reflections from the ABC’s can be neglected.

The numerical dispersion of the ESN algorithm was ana-
lyzed for a uniform microstrip ( mm, mm,
and ), shown in Fig. 3, for a frequency range of 5–12
GHz. The computed phase velocity for each frequency point
was normalized with respect to the phase velocity at 10 GHz.
The physical dispersion of this microstrip is small, as can be

(a)

(b)

Fig. 2. Model of the via. (a) Geometry. (b) ESN discretization.

Fig. 3. Normalized phase velocity versus frequency for a uniform microstrip
line.

shown from simple calculations using empirical results [13].
All the slight variations of the phase velocity reported in Fig. 3
are mainly attributed to the numerical dispersion of the ESN
algorithm.

The performance of the proposed PML’s was assessed by
using three different uniform microstrip transmission lines.
One consists of a strip suspended in free space, the second
of a strip placed on a grounded substrate with ,
and the third is identical to the second, but is covered with
a superstrate layer of .

The geometrical details of the problem are shown in the
inset of Fig. 4. The discretization along-, -, and -axes is
uniform with mm and the computational space is
subdivided into a 32 32 60 lattice. The absorption factor is
chosen to be and the PML
wall thickness is 32 cells. The reflections, shown in Fig. 4, are
smallest for uniform media reflected incident %),
and increase with the increasing number of dielectric layers.
In the case of a single substrate is 1.9% and increases to
3.1% with the addition of the cover layer.
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Fig. 4. Reflections of different types of boundary conditions.

Fig. 5. Frequency-domain errors due to PML artificial reflections.

In order to estimate the influence of the numerical reflections
on the -parameters, the following numerical experiment was
carried out. An open microstrip line ( mm), suspended
at a distance of mm in the air over a ground
plane, was chosen for the simulation. It was discretized into
a 18 28 200 lattice ( mm), with absorption
factors of 0.15, 0.1, and 0.05,
respectively, used to assess the performance of a PML layer
composed of 24 cells. The total simulation time was 2400
timesteps, for which the time-domain reflections, shown in
the inset of Fig. 5, were 2%, 6%, and 11%, respectively. The
error in the frequency-domain, due to the artificial numerical
reflections, was computed from the percent error defined
as ( TOT incident ) incident , where TOT and

incident are Fourier transforms of the total and incident voltage
waveforms. When converted to decibels, the same results
show that TOT differs from incident by 1.1, 0.5, and 0.2 dB,
respectively, for the three selected values of the absorption
factors.

The frequency response of the via structure, shown in Fig. 2,
is given in Figs. 6 and 7 for via diameters of 0.7 and 1.5 mm,
respectively. It should be noted that since the discretization of
the ESN is based on the rectangular coordinates, the circular
shape of the via, pads, and the hole through the ground plane
were modeled using a staircase approximation (see Fig. 2).

Fig. 6. S11 andS21 parameters of a through via with the rod diameter of
0.7 mm.

Fig. 7. S11 andS21 parameters of a through via with the rod diameter of
1.5 mm.

The computed -parameters of the two vias were compared to
measured data and FDTD generated data available in [4]. Note
that the agreement between the measured data, the FDTD,
and the ESN is very good. The minor discrepancies in the
measured and ESN data can be attributed to the differences
in the actual geometry and the staircase approximations used
in the ESN. On the other hand, the differences between the
ESN and FDTD data can be related to different discretization
methods—variable and uniform grids used in [4] and ESN,
respectively. To generate the data with the ESN, the geometry
was uniformly discretized into 32 40 184 cell lattice
( mm).

The numerical computations, based on the ESN, and pre-
sented in this paper, were carried out on i486DX2-66 MHz
and P5-90 MHz platforms. On the i486DX2-66 MHz platform,
the simulation time was 0.16 ms/(cell timestep), and 0.056
ms/(cell timestep) on the P5. For comparison, the regular
SNM implementation of the same problem takes 1.5 ms/(cell

timestep) on the i486DX2-66 MHz platform and 0.52
ms/(cell timestep) on the P5. At the same time, the memory
requirements for data storage were significantly different. For
the via problem with the lattice of 32 40 184 cells,
approximately 33 Mbytes of memory were required for the
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ESN compared to 71.5 Mbytes that would have been necessary
to run the SNM.
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